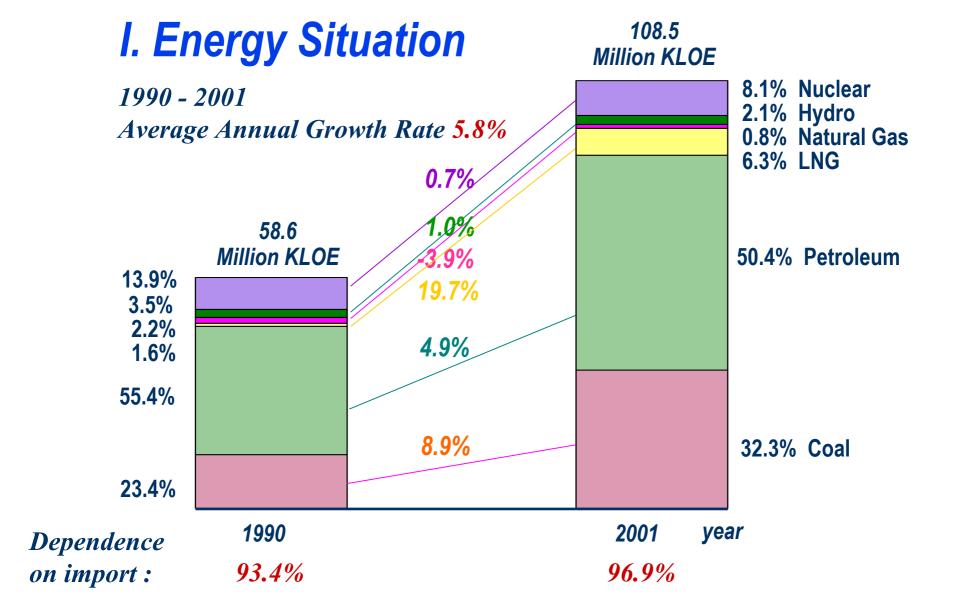
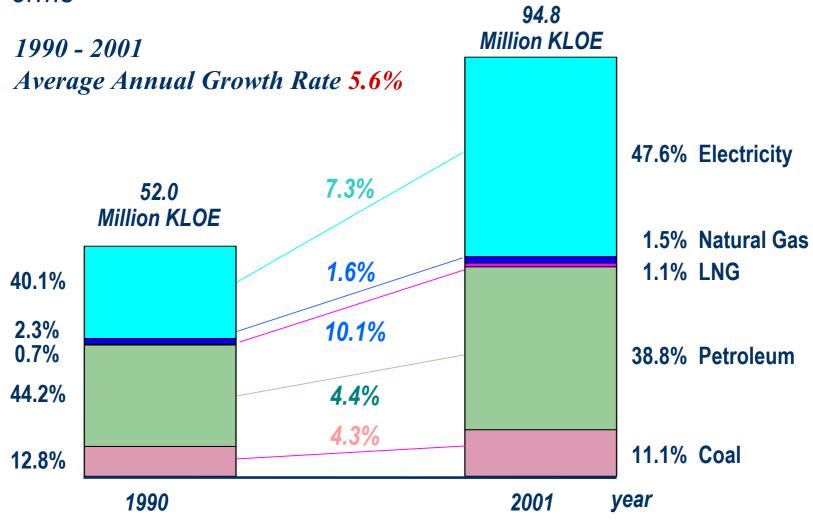
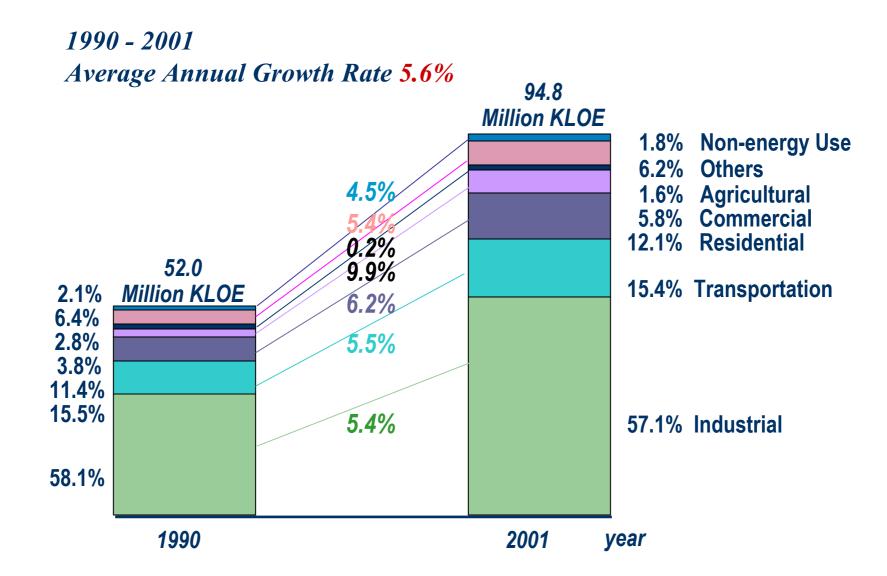
Energy Situation and Energy Conservation in Taiwan


David Yih-Liang Tzan

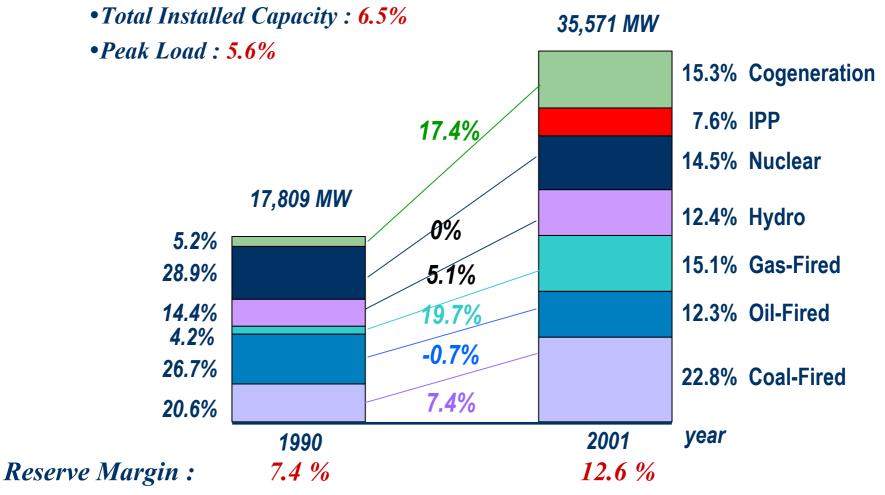
Energy & Resources Lab., ITRI


TAIWAN, ROC

December 10, 2002


Structure of Energy Supply

Structure of Energy Consumption - By Energy Forms



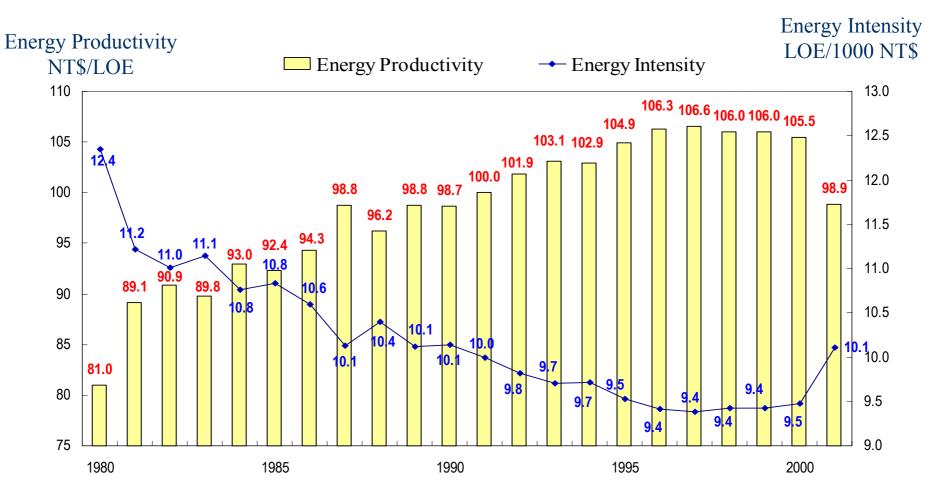
Structure of Energy Consumption - By Sectors

Installed Capacity of Power Stations

1990 - 2001 Average Annual Growth Rate

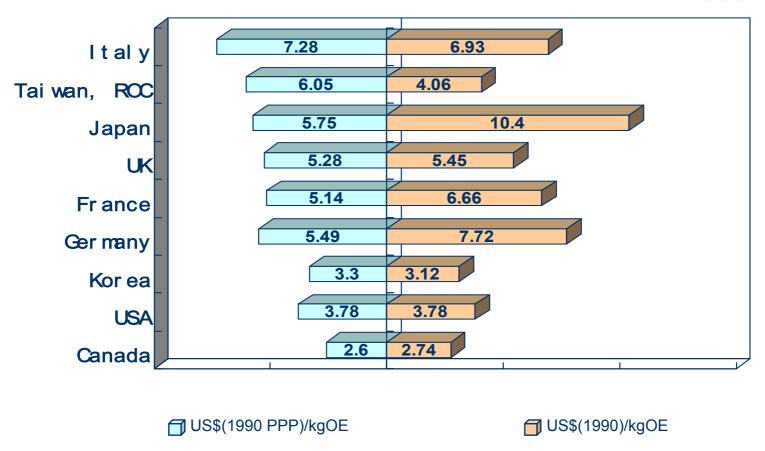
Per Capita Electricity Consumption:

4,085 KWh

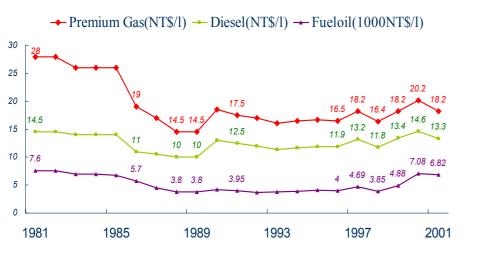

7,896 KWh

The Variation of Average Energy Consumption & Electricity Consumption in Taiwan, per capita

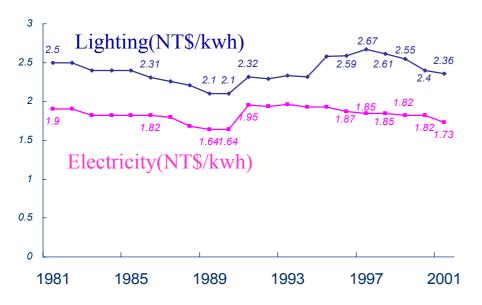
- Between 1980 and 2001
- → The growth of average annual energy consumption was 4.5%
- The growth of average annual electricity consumption was 6.1%

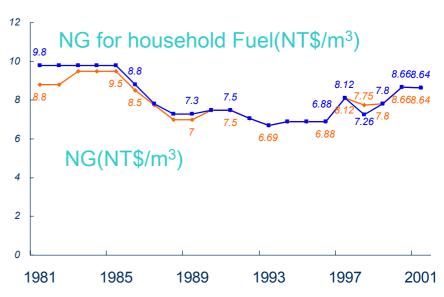


Energy Productivity


The Comparison of Energy Productivity in Major Nations






Source: Energy Balance of OECD Countries, Energy Statistics and Balance of Non-OECD Countries, 2000 * PPP (Purchasing Power Parity)

History of Energy Price in Taiwan

Introduction: Brief View of TAIWAN

- Area: 36,188 square kilometers
- Population: over 22.3 million(growing 0.44 % per year)
- Summer Temperature : 23.4° to 30.3°
- Winter Temperature : 12.1°C to 18.9°C
- Typhoons occur in summer and rains liberally in all seasons

Energy Consumption in Taiwan

- 29.58 KLOE in 1980 increased to 94.83 KLOE in 2001
- 1980 to 2001 annual average growth rate :
 - Energy consumption : 5.7%
 - GDP: 6.7%
 - Energy demand elasticity: 0.85

Energy Supply in Taiwan

	TOTAL	1980		1990		2001	
	ITEM	Million KLOE	%	Million KLOE	%	Million KLOE	%
Total	Supply	34.3	100	58.6	100	108.5	100
In	digenous	4.7	14	3.8	7	3.2	3
In	ported	29.6	86	54.8	93	105.4	97
Co	oal	5.2	15	13.7	23	35.1	32
Pe	etroleum	24.4	71	32.5	55	54.7	50
Na	atural Gas	2.0	6	1.3	2	0.8	1
LN	NG	-	-	0.9	2	6.8	6
H	ydro Power	0.7	2	2.0	4	2.3	2
Nı	uclear Power	2.0	6	8.2	14	8.8	8

Energy Consumption in Taiwan

TOTAL A	1980		1990		2001	_
ITEM	Million KLOE	%	Million KLOE	%	Million KLOE	%
Domestic Consumption (by sector)	29.6	100	52.0	100	94.8	100
Industrial Sector	19.2	65	30.2	58	54.1	57
Transportation Sector	3.6	12	8.1	16	14.6	15
Agricultural Sector	1.0	3	1.5	3	1.5	2
Residential Sector	2.9	10	5.9	11	11.5	12
Commercial Sector	0.6	2	2.0	4	5.5	6
Others	1.8	6	3.3	6	5.9	6
Non-energy Use	0.5	2	1.1	2	1.7	2
Domestic Consumption (by energy form)	29.6	100	52.0	100	94.8	100
Coal	2.5	8	6.6	13	10.5	11
Petroleum	15.4	52	23.0	44	36.8	39
Natural Gas	1.7	6	1.5	3	2.4	3
Electricity	9.9	34	20.9	40	45.1	48

Cost of Energy in Taiwan

- The ratio of energy cost over total manufacturing cost :
 - Cement industry : 28%~34%
 - Textile industry : 5%~7%
 - Petrochemical industry : 4%~6%
 - Iron and steel industry : 4%~5.5% (exclude the coking coal)
 - Semiconductor industry : 2%~3.5%

Energy Prices in Taiwan

ITEM	1998 Jan.	1999 Jan.	2000 Jan.	2001 Jan.
LPG(per kg)*	33.47	29.67	32.57	43.44
Unleaded Gasoline (95)	53.77	50.85	59.28	61.80
Jet Fuel	30.28	26.82	29.48	28.97
Diesel Oil	39.00	36.59	43.65	44.97
Fuel Oil(0.5% S)	15.36	13.68	17.72	23.32
Electricity**	6.38	6.53	6.88	6.46
Exchange Rate(1 U\$ = NT)	33.85	32.25	30.70	32.69

*Wholesale Prices **Average Price

UNIT: US cents/liter for Petroleum Product, US Cents/kwh for Electricity

Distribution of electrical cost of building in Taiwan

ITEM	Season	Air Conditioning	Lighting	Motor & Pump
OCC	Summer	41	35	24
Office	Winter	19	57	24
Department	Summer	36	44	20
Store	Winter	29	50	21
II - 4 - 1	Summer	50	26	24
Hotel	Winter	30	31	39
TT 4 - 1	Summer	58	31	11
Hospital	Winter	42	38	20

Energy Conservation Policy in Taiwan

- Policy: cope with the actual needs of energy supply and coordinate with domestic economic development
- Target: establish a liberalized, orderly, efficient, and clean energy supply and demand system
- National Energy Conference: 28 % in total energy saving compared with the base year of 1996, by the year 2020

Plan and Promotion for Energy

Industrial Sector

- Establish energy efficiency index and auditing system
- Implement an auditing system for energy users
- Promote voluntary energy-saving program
- Enhance energy efficiency standards of equipment
- Expand financial incentives for energy conservation
- Strengthen energy conservation technical services

Transportation Sector

- Enhance and revise fuel economy standards for vehicles
- Expedite procurement of energy-saving vehicles
- Establish a sound public transportation system
- Promote fuel tax collection at point of sale rather than on the vehicle imposition base
- Implement a management strategy for the transportation system
- Develop intelligent transportation systems

Plan and Promotion for Energy (cont.)

- Residential and Commercial Sector
 - Raise the energy efficiency standard of electrical appliances
 - Strengthen the building envelope energy consumption index
 - Establish inspection system for energy conservation of buildings
 - Establish a total energy consumption control system for buildings
- Power Sector
 - Enhance efficiency of power generating plants
 - Enhance transmission and distribution efficiency
 - Promote cogeneration system
 - Conduct demand-side management measures

Plan and Promotion for Energy(cont.)

- Development of Energy Conservation Technology
 - Green-building energy saving technology
 - Industrial energy-efficiency enhancing technology
 - High efficiency equipment production technology
 - Innovative energy-saving product technology
- Education and Guidance
 - Energy conservation education in schools
 - Industrial energy conservation training
 - Energy conservation education for the public

Energy Conservation Achievements

- Energy auditing: savings 750 GWH of electricity,
 146,000 kiloliters of oil and 92,000 tans of coal in 2000
- Energy-consumption standards management for electric appliances: peak load power saving 160 MW
- Fuel economy standards management : fuel saving of 130,000 kiloliters
- Energy conservation technical services: savings 170
 GWH of electricity、14,000 kiloliters of oil、peak load power saving of 40 MW in 2000
- Shifting on-peak energy usage to off-peak hours measures: clipped 4,336 MW peak load

Energy Conservation Achievements(Continue)

- Promotion cogeneration system: installation capacity reached 4,640 MW
- Incentives to procure energy-conservation equipment:
 2-year accelerated-depreciation, 10% to 20% tax
 credit, low-interest loan
- Approved depreciation to corporations for investing in energy-conservation equipment: NT 8.57 billion
- Implementation of low-interest loans: NT 11.1 billion
- Implementation of tax credit: NT 370 million

Energy Conservation Achievements of R.O.C. in 2000

Energy Saving ITEM	Oil (kl)	Coal (tons)	Electricity (Gwh)	Peak Load Reduction (MW)
1.Energy Auditing System	146,000	92,000	750	-
2.Standards management for Electric Appliances	-	-	-	160
3.Standards Management for New Vehicles & Fishing Boat Engines	130,000	-	-	-
4.Technical Services	14,000	-	170	40
5.DSM (Load Shifting)	-	-	-	4,336
6.Promotion of cogeneration	-	-	-	(4,640)
7.Financial Incentives for investing in energy conservation equipment	present Low-interest lopresent	oans:11.1 billion	n NT dollars appro	roved from 1994 to the oved from 1994 to the approved from 1991 to

Organization of ITRI

ITRI 9th Board of Directors & Supervisors

Chairman

Cheng-I Weng

Managing Directors

Hsin-I Lin, Show-Chung Ho, Che-Ho Wei, Ching-Yen Tsay, Morris Chang, Stan Shih

Directors

Chil-Ming Yiin, Shyue-Ching Lu, Paul Chang, Chang-Wen Wu, Chung-Laung Liu, Tu Chan, Kenneth K.T.Yen

Executive Supervisor

Chuan Lin

Supervisors

Se-Hwa Wu, Chung-Yu Chen, Chun-Yen Chang, Matthew F. C. Miau

President

Chintay Shih

Executive Vice President

Jih-Chang Yang, Johnsee Lee

Vice President

Richard Y. H. Lin

Senior Advisors

Min-Jan Chen, Ling-Yuan Chen

Divisions and Centers

Union Chemical Laboratories (UC

Electronics Research & Service Organization (ERSO)

Mechanical Industry Research Laboratories (MIBL)

Materials Research Laboratories

Energy & Resources Laboratories (ERL)

Computer & Communications Research Laboratories (CCL)

Opto-Electronics & Systems Laboratories (OES)

Center for Environmental, Safety and Health Technology Development (CESH)

Center for Measurement Standards (CMS)

Center for Aviation & Space Technology (CAST)

Biomedical Engineering Center (BMEC)

Administrative Services Center

Information Technology Service
Center

System-on-Chip Technology Center

Industrial Economics & Knowledge Center

Technology Transfer & Service Center

Industrial Technology Investment Corporation Wu-Hsun Cheng

Jyuo-Min Shyu

Shing-Yuan Tsai

Jong-Min Liu

Hsin-Sen Chu

Bae-Shuh Lin

Yung-Sheng Lit

Shun-Weel Yu

Chang Hsu

Elmer M. Hsu

Johnsee Lee

Yeou-Geng Hsu

Alice T. Lean

Bao-Shuh Lin

Kung Wang

Sao-Cheng Chiou

Andrew Wang

ITRI's Mission

- ITRI was established to accelerate industrial technology development. Its accomplishments include establishing high-tech industries, applying various technologies to those industries, improving industrial structures, advancing Taiwan's international market competitiveness, promoting environmental protection, and enhancing the quality of life.
- Besides meeting industry's needs and carrying out industryoriented projects, ITRI has dedicated itself to strengthening
 its capacity for forward-looking technological research and
 development to give industry even greater technology
 advantages. ITRI has always intended to be a leading
 source of industrial development and a world-class industrial
 technology research institute.

Energy & Resource Laboratories

- Energy Technology
 - Thermofluids Technology
 - Electro-Technology
 - Combustion Technology
 - New Energy
- Resources Technology
 - Drilling and Borehole Logging、Rock and Soil Mechanics、Geophysics、Soil and Groundwater Monitoring、Remote Sensing、Oceanography